
Time dependence of the ground-state population statistics of condensed microcavity polaritons

Nguyen Duy Vy, H. Thien Cao, and D. B. Tran Thoai
Ho Chi Minh City Institute of Physics, Vietnam Center for Natural Science and Technology, 1 Mac Dinh Chi, Ho Chi Minh City, Vietnam

H. Haug
Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, D-60438 Frankfurt a.M., Germany

�Received 9 July 2009; revised manuscript received 7 October 2009; published 5 November 2009�

The semiclassical approach consisting of Boltzmann equations for the excited states and the ground state
supplemented by a Master equation for the probability distribution of the condensate population is solved for
picosecond pulsed microcavity polaritons. With the simple birth- and death-type Master equation for the
condensate population that disregards the condensate phase, one gets results, which, compared to quasistation-
ary solutions, are in better agreement with the experiments. First, the time-dependent solutions show the
influence of the change to the coherent state already at pump powers close above the condensate threshold.
Second, and even more important for the interpretation of corresponding pulsed experiments, the time-
dependent solution give results for the second-order correlation function with seemingly larger correlations
above threshold, although no polariton-polariton interaction in the ground state has been included.
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I. INTRODUCTION

Many observations on optically excited polaritons in mi-
crocavities can consistently be described in terms of a non-
equilibrium finite-size Bose-Einstein condensation �BEC�.1,2

In these structures, one of the lowest photon modes is in
resonance with excitons confined in one or several quantum
wells. The collective excitations of these systems are polari-
tons. In particular, the lower polariton branch is well sepa-
rated from the higher branch by a gap that is larger than the
damping of the polaritons �strong coupling case�. The ex-
cited polaritons relax by phonon and particle-particle scatter-
ing to the ground state. At sufficiently low temperatures and
sufficiently strong pumping, a condensation in the ground
state forms, which is directly observable in terms of an onset
of laser action of the lowest photon mode of the cavity. An
important test of the coherence properties of the condensate
is the temporal intensity-intensity correlation function that
has been of crucial importance for characterizing the coher-
ence properties of laser light. Measurements of this function
have already been performed by Deng et al. for pulse-excited
microcavities �mc’s�.3 Similar experiments have been per-
formed with CdTe mc’s.4 A first attempt to explain these
measurements is due to Laussy et al.5 in terms of a coupled
Boltzmann equation and Master equation kinetics. Succes-
sively, we used the same approach consisting of the coupled
Boltzmann-Master equations but with both the polariton-
phonon and the polariton-polariton scattering to calculate the
second-order correlation function for GaAs mc’s under qua-
sistationary excitation.6 It has been found that the observed
large correlations can be understood in quasiequilibrium only
if one includes remarkably strong two-quantum scattering
processes, as first recognized by Schwendimann and
Quattropani.7 In contrast to Ref. 6, we determine here the
correlations for picosecond pulsed excitation.

II. BOLTZMANN-MASTER EQUATIONS

In this section, we recapitulate briefly the structure of the
Boltzmann condensation kinetics of the mc polaritons in the

lower branch. We mention again that we take the finite cross-
section of the mc for the two-dimensional polaritons into
account. This finite geometry causes a gap in the energy
spectrum between the ground state and the first excited
states. For this reason, one obtains at finite temperatures a
finite size nonequilibrium Bose-Einstein condensation. For
the relaxation kinetics, we take the polariton-polariton �p-p�
and the polariton-phonon �p-ph� interactions into account.
The structure of the Boltzmann equations for the excited
state population nk�t� is

�
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Here, Pk��t� is the time-dependent pump rate

Pveck�t� = P0e−�2�k − kp�2/2mx�Ee−2 ln 2t2/tp
2
, �2�

where the pump wave number kp=1.7�105 cm−1 has been
chosen to be well above the resonance where coherent scat-
tering into the ground state becomes possible. The energy
spread of the pump range is assumed to be �E=0.1 meV.
The pump duration tp is assumed here to be 2.5 ps.

The inverse polariton lifetime 1 /�k� is decomposed into the
large mc photon decay rate and the smaller one of the quan-
tum well exciton each weighted by the square of the corre-
sponding Hopfield coefficients. The p-p scattering rates have
the basic form
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where k�1=k� +q� and k�2=k��−q� . The polariton scattering rate
for emission and absorption of an acoustic phonon is
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where the initial and final state phonon numbers are
Nq,�=Nq+ 1

2 + �
2 , with the thermal Bose distribution

Nq= �exp��	q
�−1�−1. The transition probability is deter-
mined by the deformation potential coupling of an electron-
hole pair to the lattice. If we solve the Boltzmann equations
for nk�t� and n0�t� for a short ps pump pulse, one finds that
about 20–30 ps after the excitation pulse a local equilibrium
distribution is established. The distribution over the excited
states can be described by a Bose-Einstein distribution with a
rather small degeneracy parameter � /kT and a temperature
close to the bath temperature. The Boltzmann equation �1�
for the ground-state population can be written in terms of the
scattering rates in and out of the ground-state Rin and Rout,
respectively

��n0�
�t

= �Rin�t��1 + n0�t��� − �Rout�t�n0�t�� . �5�

The rate-in is given by the scattering processes from the
excited states to the ground state by polariton-polariton
�p− p� and polariton-phonon �p−ph� scattering

Rin = �
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The rate-out is given by
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Because one has to calculate for the second-order correlation
function second moments of the condensate population, we
need a stochastic extension of the kinetic equation for the
condensate. With the generation Gn=Rn

in�n+1� and the decay
rate Dn=Rn

outn, we get the Master equation

dWn

dt
= − �Gn + Dn�Wn + Dn+1Wn+1 + Gn−1Wn−1. �8�

The rate equation does not provide the full information
for the construction of the corresponding Master equation,
because the transition rates are only known for �n0� but not
for arbitrary n=n0.11 A simple procedure to include
this correction has been formulated by Laussy et al.5 by
expanding the distributions of the excited states linearly
nk�n�= �nk�+

�nk

�n �n− �n�� in the deviation of the ground-state
population n around its mean value �n�, and estimating
	
��nk��n�

�n 	�n�

�nk�

�n�−N , where N is the total number of polaritons.
This yields �nk��n�
�nk��1+ n−�n�

�n�−N �. One sees that these cor-
rection terms of the scattering rates in the Master equation
vanish approximately, if one calculates with the modified

Master equation and with �n�=�nnWn the rate equation
again. We will use these corrections of the scattering rates in
linear approximation.

III. SOLUTIONS FOR PULSED EXCITATIONS

The solutions of the Boltzmann-Master equations under
quasistationary conditions6 gave second-order correlation
functions which deviated in two important aspects from the
experimental observations. The decay from the thermal limit
g�2�=2 below threshold occurred above threshold only very
gradually, but it reached the coherent limit already at twice
the pump power. It seems that in the semiclassical descrip-
tion the transition to the coherent phase sets in with increas-
ing pump power only in a retarded way. But in the experi-
ment, the decay of g�2� never reaches the ideal coherent limit
of 1. The later fact indicates stronger correlations in the po-
lariton condensate compared to, e.g., the photons in a coher-
ent laser state. Schwendimann and Quattropani7 used the in-
teraction of two ground-state polariton with two excited
polariton states which produced the larger correlations above
threshold. However, as this process is nonresonant, it re-
mains questionable6 whether this process alone can explain
the observed large correlations above threshold. Other recent
investigations of the second-order correlation used the anal-
ogy with atomic lasers8,9 or used a Langevin fluctuation
theory.9,10

We will show by self-consistent time-dependent solutions
of the mean-field Boltzmann distributions nk�t� ,n0�t� and the
probability distribution of the ground-state population Wn�t�
that at least for pulsed excitations both discussed deficiencies
are no longer as severe as for the stationary solutions. Thus,
one needs at least considerably less additional correlations in
the condensate to explain the experiments. Laussy et al.5

have also given time-dependent solutions for a gradually
switched-on pump, which leads after some time to a station-
ary state. Rubo et al.12 showed in the treatment of a polariton
amplifier an interesting way to go beyond the Boltzmann-
Master equation by replacing the semiclassical Master equa-
tion by an equation for the quantum statistical operator. In
order to get a coherent amplitude, they used a dynamical
symmetry-breaking in terms of a small coherent-state initial
condition for the statistical operator.

FIG. 1. Calculated distribution functions Wn for a pumping be-
low threshold P / Pth=0.9 at the time t=50 ps after the pulse. The
inset shows the temporal evolution n0�t�
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In accordance with the experiment, we use a zero detun-
ing and the Gaussian 2.5-ps pump pulse �2�, otherwise all
parameters are those of Ref. 6 for GaAs microcavities. We
would like to mention that the above described Boltzmann
relaxation kinetics �alone, i.e., without the coupled Master
equation� with polariton-polariton and polariton-acoustic
phonon scattering yielded about 20 ps after a 3-ps pump
pulse a thermalization of the excited polariton states. After
thermalization, the polariton distribution can be fitted by a
local equilibrium Bose-Einstein distribution with slowly
varying time-dependent temperature and chemical
potential.13 The calculated thermalization and relaxation sce-
nario is in excellent agreement with corresponding
experiments,14 in particular its strong dependence on the de-
tuning between the photon and exciton modes. Both experi-
ment and numerical studies showed that the polariton gas
temperature T relaxes toward the lattice temperature Tl and
that the chemical potential � remains for a relatively long
time in the quantum degenerate region where � /kT�1. The
additionally coupled Master equation considered here does
not change these results.

We first show in Figs. 1 and 2 the ground-state population
distribution Wn�t=50 ps� after the pump pulse together with
the temporal evolution of the mean ground-state population
n0�t� below but close to threshold and above threshold
P / Pth=2.5. Note the different scales for n0�t� below and
above threshold. Both results resemble qualitatively those
obtained in the quasistationary situation. Because one has to

include a gain saturation in the Master equation, one has to
convince oneself, that the mean ground-state population
obtained directly from the Boltzmann equation and that
obtained with the solution of the Master equation
n0�t�=�nnWn�t� are in reasonable agreement. Figure 3 shows
that both results agree reasonably well, if one considers the
rough estimate of the gain saturation.5

Next, we will show in Fig. 4 that the time-dependent so-
lutions for Wn�t� deviate even three times above threshold
considerably from an ideal Poisson distribution with the
same mean number of polaritons in the ground state. 127 ps
after the pulse, the mean polariton number is 100. It is seen
that the actual distribution is considerably broader than a
corresponding Poisson distribution, although we know that
the system is in a quasithermal equilibrium for times larger
than about 40 ps. 150 ps after the pulse, a qualitative similar
relation exists, although the decay processes reduced the
mean number of condensed polaritons already to 14. The
time-dependent second-order population correlation at zero
delay �=0 is

g�2��� = 0,t� =
�nn�n − 1�Wn�t�

��nnWn�t��2 . �9�

In Fig. 5, g�2� is plotted in the time range of 0–200 ps for
normalized pump powers between 0.9 and 2.5. In the experi-
ment, only a g�2�
�0

T dt
T g�2��0, t� averaged over the whole

time interval T of the optical output. In Fig. 6, the averaged

FIG. 2. Calculated distribution functions Wn for a pumping
above threshold P / Pth=2.5 at the time t=50 ps after the pulse. The
inset shows the temporal evolution n0�t�

FIG. 3. Mean condensate population as obtained from the Bolt-
zmann equations �full line� and from the solution of the Master
equation with n0�t�=�nnWn�t� �circles�

FIG. 4. Calculated probability distribution function
Wn�t=127 ps� and Wn�t=150 ps� for a pump power P / Pth=3. For
comparison, the Poisson distribution �dashed line� is shown with the
same mean condensate population

FIG. 5. Calculated second-order coherence function g�2��0, t�
versus t for various normalized pump powers
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second-order correlation function is compared to the quasis-
tationary one for normalized pump powers up to 3. One sees
that the full time-dependent solution for the distribution
function Wn�t� yields a correlation function whose decay
starts right at threshold. The fast transients obviously help to
trigger the transition from the thermal state to the coherent
state which however is in the available finite life time of the
mc polaritons not reached in its ideal Poisson limit �see Fig.
4�. At the same time, Fig. 6 shows that g�2� decreases slower
with increasing pump power than the quasistationary g�2�.6

Particularly important is that g�2��P / Pth� levels off at a cor-
relation larger than the ideal coherent value of one. Thus the
time-dependence alone causes a fictitious correlation in the
condensate, although we did in the present calculations not
take into account any polariton-polariton interaction in the
ground state. The described features of the averaged correla-
tion function brings it closer to the experimental results3 re-
produced in Fig. 7. It should be remarked that the measure-

ment of the second-order correlation function suffers from
limited time resolution in the threshold region, so the thermal
limit of two is not reached.

In conclusion, it is shown that the need to consider addi-
tional interaction effects between polaritons in the conden-
sate is by the time-dependent solutions of the Boltzmann-
Master equations—at least for experiments that are not truly
stationary—considerably reduced. For the same excitation
conditions where we get improved g�2� values, the considered
kinetics yields polariton distributions13 that have been found
to be in very good agreement with the experiment.14
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FIG. 6. Calculated time-averaged second-order coherence
function g�2��0� versus normalized pump power. The dotted line
gives the stationary results of Ref. 6
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FIG. 7. Measured time-averaged second-order coherence
function g�2��0� versus normalized pump power P / Pth according to
Deng et al. �Ref. 3� for GaAs mc’s
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